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Singular Lagrangians with higher derivatives 

V V Nesterenko 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (Dubna), Head 
Post Office, PO Box 79, Moscow, USSR 

Received 1 August 1988 

Abstract. The Hamiltonian formalism for systems with singular Lagrangians of the second 
order is constructed. A new method is proposed for obtaining the equations of motion in 
the phase space for theories with singular Lagrangians and the connection of the Lagrangian 
and Hamiltonian descriptions is traced in detail. As an example, a generalisation of the 
relativistic point action is considered. It involves both the length and curvature of the 
point trajectory in spacetime. 

1. Introduction 

Quantum field theories with Lagrangians containing derivatives of field functions higher 
than first order have a bad reputation because of ghost states with negative norm and, 
as a consequence, the possibility of unitarity violation [ 11. However, such theories 
also have attractive properties; in particular, the convergence of the corresponding 
Feynman diagrams is improved. Therefore, gauge theories with higher derivatives 
[2-41 and gravity models with quadratic and higher-order curvature corrections to the 
Einstein-Hilbert action [ 5-12] have been considered. These theories are described by 
singular or degenerate Lagrangians with higher derivatives. Recently such Lagrangians 
have been used in some string models [ 11,231. 

The quantisation of the Yang-Mills fields has shown that canonical quantisation 
is most suitable for the investigation of unitarity properties of quantum gauge fields. 
This approach is based on the Hamiltonian description of classical dynamics. The 
Hamiltonian formalism for the usual gauge fields is constructed with the aid of the 
Dirac theory of the generalised Hamiltonian systems with constraints of the first order 
[13-161. 

It is natural to explore the ghost-state problem and unitarity in theories with singular 
Lagrangians with higher derivatives in the framework of the canonical quantisation 
as well. For this purpose, however, the Hamiltonian formalism for these theories must 
be constructed, which is the basic aim of the present paper. A new method of obtaining 
the equations of motion in the phase space for theories with singular Lagrangians is 
proposed and the connection of the Lagrangian and Hamiltonian descriptions is traced 
in detail. For simplicity only the degenerate Lagrangians of second order will be 
considered. Recently [ 171 the same consideration has been repeated in terms of modern 
differential geometry. 

This paper is organised as follows. In the § 2 the canonical variables are introduced 
and the definition of singular Lagrangians is given. In § 3 the equations of motion 
in the phase space are obtained in a new way by differentiation of the canonical 
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Hamiltonian. In 0 4 it is shown how one can get all the secondary constraints in the 
framework of the Lagrangian formalism and using the equations of motion in the 
Euler form. In 0 5, as an example, a generalisation of the relativistic action of a point 
particle is considered: to the usual action proportional to the length of the world 
trajectory of a particle one adds the integral along this trajectory of its curvature [ 181. 
The Hamiltonian description of the classical dynamics of this object is given and the 
transition to quantum theory is briefly discussed. In conclusion unsolved problems in 
this approach are noted. 

2. The singular Lagrangians of second order 

Let us consider a system with a finite number, n, of degrees of freedom. Let x =  
( x l ,  x2 , .  . . , x,) be generalised coordinates of this system and 

L(x, i ,  X), 1 = dx( t ) /dt  (2.1) 

be its Lagrangian function. The Euler equations are 

aL d aL d2 aL 
ax, dt  a i ,  dt2 axi 

-+--=o i = 1 , 2  , . . . ,  n. 

The canonical variables for Lagrangian (2.1) are introduced in the following way: 

91, = X i  421 = xi (2.3) 

aL d aL 
a i i  d t  ax Pli =--- - 

a2L .. a 2 ~  ... 
5 xj -- ij -- aL a2L 

a i ,  axiaxj ailax, aXiaxj 
- --_- (2.4) 

As usual, the summation over repeated indices in the corresponding limits is supposed. 
Lagrangian (2.1) is called non-degenerate if the canonical variables q l ,  q 2 ,  p1 and 

p 2  introduced according to (2.3)-(2.5) are independent, i.e. if there are no equation 
of the form? 

f(41, q 2 ,  PI I P 2 )  = 0 (2.6) 
which become identities with respect to x, x, x, x after the substitution into them of 
definitions (2.3)-(2.5). Otherwise, i.e. when the relations (2.6) are valid, Lagrangian 
(2.1) is called singular or degenerate. 

The condition that the Lagrangian is non-singular is obviously equivalent to the 
requirement that equations (2.4) and (2.5) can be solved uniquely with respect to the 
variables xi and XI, i = 1,. . . , n, in the form 

x i=x i (q* ,  4 2 , ~ ~ )  (2.7) 
For this solution it is necessary that in the whole range of variables x, x, x the condition 

rank((Alj(( = n (2.8) 

xi = x i  ( 4 1 9 q 2  P I  9 ~ 2 )  i =  1,. . . , n. 

t It is supposed that equations (2.6) do not reduce to the form g ( 9 , ,  q2)  = 0. 
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is fulfilled, where 

1 s i, j s n. 
a2L 

axiai, 
AV(x, 1, X )  =- (2.9) 

If condition (2.8) is satisfied, then there are no relations (2.6). To prove this, let 
us suppose the opposite, i.e. let the constraint (2.6) take place, with not all the derivatives 
af/apli, i = 1 , .  . . , n, vanishing simultaneously. Substituting definitions (2.4) and (2.5) 
into (2.6) we get the identity with respect to x, x, x, x. Differentiation of this identity 
gives 

(2.10) 

which obviously contradicts (2.8). If the function f in (2.6) does not depend on p l ,  
then the derivatives aflap,,, k = 1, . . . , n, cannot vanish simultaneously. Differentiating 
(2.6) with respect to xj we obtain 

(2.11) 

which contradict (2.8) again. Thus, the absence of relations (2.6) between the canonical 
variables is equivalent to the condition (2.8). 

If Lagrangian (2.1) is non-singular, then the Euler equations (2.2) due to condition 
(2.8) can be represented in the normal form 

(2.12) 

As early as 1850 Ostrogradskii [ 191 showed that for non-degenerate Lagrangians 
a system of n equations of fourth order (2.2) or (2.12) is equivalent to a canonical 
system of 4n equations of first order 

.... x, = 'XZ.(X, 1, x, x) l s i s n .  

aH aH 

(2.13) 

where the Hamiltonian H is defined by 

H=plX+p2X-L(x,1,X). (2.14) 

It is important that H can be represented only as a function of the canonical variables 
q l ,  q2,p1 ,p2 .  Indeed, using (2.5) we get from (2.14) 

(2.15) 

Thus, d H  depends only on the differentials of the canonical variables, this being right 
both for non-degenerate Lagrangians and for degenerate ones. In both cases we have 

(2.16) H = H ( % ,  42 ,  P1, PZ) 

(2.17) 



1676 V V Nesterenko 

Substituting p ,  - (dL/dx)  into (2.15) according to (2.4) by -p2 and dL/ax by virtue of 
the Euler equations (2.2) by P1, we equate the right-hand sides in (2.15) and (2.17): 

- t i 1  dq, -P2 dq2 + 41 dp, + 4 2  dp2 

Now we get 

(2.18) 

(2.19) 

For non-singular Lagrangians the canonical variables q, , q2 ,  p1 and p2 are independent 
and as a consequence their differentials are independent. This enables one to equate 
to zero the coefficients of each differential in (2.1) and to obtain the canonical equations 
(2.13). It was in this way that Ostrogradskii [19] obtained equations (2.13). 

If the action corresponding to the Lagrangian (2.1) is invariant under transformation 
t + t + E ,  then according to the first Noether theorem [20] the quantity 

~ ( x , x , x , x ) = H ( q , = ~ , q ~ = x , ~ ~ = p ~ ( ~ , x , x , ~ ) , p ~ = p ~ ( x , x , x ) )  (2.20) 

is conserved on solutions of the equations of motion (2.2). Therefore E can naturally 
be called the energy. 

3. Constraints in the phase space and the generalised Hamiltonian equations of motion 

Let the initial Lagrangian (2.1) be singular. We suppose that in the whole range of 
variables x, x and x the condition 

(3.1) 

is satisfied. In this case the Euler equations (2.2) represent a system of r equations of 
fourth order and m, = n - r equations containing no 'x'. These last m, equations will 
be called the Lagrangian constraints. They can be separated from system (2.2) in the 
following way. Let 54(x, x, x), a = 1, . . . , m, , i = 1, . . . , n be eigenvectors of the matrix 
A defined by (2.9) with zero eigenvalues 

rankllAvll = r = n - m 1  

t?(x, x, x ) A i j ( x ,  x, x) = 0 1 zs i, j s n, 1 s a zs m ,  . (3.2) 

The number of such vectors due to (3.1) is ml. Projecting the Euler equations (2.2) 
on these eigenvectors we get m, Lagrangian constraints 

B,(x,  x, x, X)  = 6; (%-tili) axi 1 s a  < m, .  (3.3) 

We suppose that the system of equations (2.2) is consistent. It will be satisfied, for 
example, in the case when the Lagrangian constraints containing no *x' define the 
invariant submanifold for equations of fourth order in (2.2) [15]. 

Taking into account (3.1) one can immediately obtain m, constraints on q , ,  q2 and 
p 2 .  For this purpose relations (2.5) have to be solved for r variables f in the form 
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Here we suppose that the first r rows and r columns of A are linearly independent. 
This can obviously be done always by a corresponding change of numeration of the 
variables x i ,  i = 1 , .  . . , n. Substituting (3.2) into the remaining ml relations (2.5) we 
get m, constraints in the form 

~ 2 , r + a  = ~ 2 , r + a ( q l ,  q 2  9 P ~ P )  a = 1 , .  . . , m, = n - r p = 1 , .  . . , r. (3.5) 

These constraints or the set of constraints equivalent to them will be written hereafter 
in the following way: 

P c , ( q l , q 2 , P J = o  a = 1 , .  . . , m,. (3.6) 

Constraints (3.5) or (3.6), by analogy with the Dirac generalised Hamiltonian 
dynamics for singular Lagrangians without higher derivatives [ 11-14], can naturally 
be called the primary constraints, as they are a consequence of the singularity condition 
(3.1) for Lagrangian (2.1) and the definition of canonical momenta (2.5) without using 
the equations of motion (2.2). After substitution of the definitions (2.3) and (2.5) into 
constraints (3.6) the latter transform into m, identities for x, x, x. 

Replacingf in (2.1 1 )  by the primary constraints (3.6) one verifies that zero eigenvec- 
tors ,$(x, 1, x), 1 < a s m, , 1 S i d n, of the matrix A can always be chosen so that they 
transform by virtue of the definition (2.5) into the functions which depend only on 
the canonical variables q,, q2 and p 2 ,  i.e. the dependence of x disappears. Without 
loss of generality one can put 

Let us try to transform the Euler equations (2.2) for singular Lagrangians into the 
phase space. For this purpose we replace the canonical momentap2 by their expressions 
in terms of q l ,  q2 and q2 according to (2.5) on the left- and right-hand sides of the 
definition of the canonical Hamiltonian 

As a result, we obtain an identity with respect to q, ,  q2,  p ,  and q 2 .  Differentiation of 
this identity with respect to q2 gives 

The bar means the replacement described above, i.e. 

Since aj4j/a42i = A u ( q l ,  q 2 ,  q2), it follows from (3.9) that the quantities 

(3.10) 

(3.11) 

are eigenvectors of the matrix A( ql  , q 2 ,  q2) with zero eigenvalue. This vector can be 
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decomposed over a complete set of zero eigenvectors of the matrix A: 

(3.12) 

Here we have used (3.7). 

q2, and take into account the relation 
Let us substitute (2.5) into (3.8), differentiate the identity obtained with respect to 

p1 +P2 = aL/aq2 (3.13) 

which follows from (2.4) and (2.5). As a result, we obtain 

Differentiation with respect to q1 and q2 of the identities, which appear upon transform- 
ing the primary constraints (3.6) by substitution of (2.5) into them, gives 

Now (3.12) can be rewritten in the form 

Taking into account that the Euler equations (2.2) can be cast in the form 

PI = aL/aq, 

we obtain 

Finally differentiation of (3.8) with respect to p1 gives 

l s i s n .  
aH q l i  --=o 
 PI i  

We now introduce the Poisson brackets in the usual way: 

f=f(sl* q29PlrP2) g = q2r PI,  P 2 ) .  

Using them we can write (3.12), (3.16a), (3.17) and (3.18) in the form 
m 

(3.15) 

(3.16~1) 

(3.16 b )  

(3.17) 

(3.18) 

(3.19) 

(3.20) 

Here z means a complete set of the canonical variables q l ,  q2,  p1 and p ? .  
We recall that equations (3.20) are written in terms of the variables ql ,  q2,  p ,  and 

q 2 .  The expressions (2 ,  H) and (z, pa) can obviously be transformed into the phase 
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space if we take account of (2.5). As a result, we get the functions of the canonical 
variables ( z ,  H )  and ( z ,  cp,) respectively. The correspondence between ( z ,  H), (2 ,  cp,) 
and ( z ,  H ) ,  ( z ,  cp,) is one-to-one only on the submanifold of the phase space defined 
by the primary constraints (3.5) or (3.6). The dependence on q2 in the functions 
A a ( q , ,  q2 ,  p , ,  q2 )  does not disappear by virtue of (2.5). In order to prove this, it is 
sufficient to act on the left- and right-hand sides of (3.12) by the following linear 
differential operators [21]: 

-- 

(3.21) 

This gives 

If one takes the primary constraints in the resolved form (3.5), then the functions A, 
reduce in this case to &+,, a = 1, .  . . , m,. 

Thus, the only way to transform equations (3.20) into the phase space is to eliminate 
the functions A a ( q ,  , q 2 ,  p1 , q2) imposing additional conditions on the solutions of these 
equations?. From this point on, we are actually dealing with the Dirac system with 
primary constraints [ 131. 

In the Dirac approach, however, the equations of motion in the phase space were 
obtained by the Lagrangian method of indefinite multipliers. Therefore the functions 
Aa were considered at first as unknown functions of time determined by additional 
conditions on the solutions of the equations of motion. One demands that the time 
derivatives of the primary constraints vanish on the solutions of these equations. As 
is known, all the secondary constraints can be obtained in this way and some number 
of functions A, can be expressed in terms of the canonical variables. The remaining 
undetermined functions A,( t ) ,  the number of which equals the number of the primary 
first-class constraints, describe the functional freedom in the theory. But in the Dirac 
reasoning there are no convincing arguments why it is sufficient to take into account 
only the primary constraints in order to obtain the equations of motion in the phase 
space by the Lagrangian method of indefinite multipliers. In our opinion, the derivation 
of these equations by the differentiation of the canonical Hamiltonian fills this gap. 
Another method of obtaining the equations of motion in the phase space for singular 
Lagrangians of arbitrary order, which avoids this problem, is developed in [16]. 

So, we shall further follow the Dirac reasoning. Let us demand that the time 
derivatives of the primary constraints vanish on the solutions of equations (3.20) 

a, b, c =  1 , .  . . , m,. 
(3.23) 

- 
Here the sign 2 means a weak equality when the conditions Q, = 0 are satisfied. The 
expressions (cp,, H) and (cp,, ( o b )  can be transformed into the phase space if we take 
into account (2.5). Hence one can express from (3.23) rl functions A, in terms of the 

t If the Lagrangian L is non-degenerate, i.e. rank A = n, then it follows from (3.9) that (3.11) vanishes and 
on the right-hand sides of (3.16), (3.17) and (3.18) we have zeros. As a result, we get the canonical 
Ostrogradskii equations (2.13). 



1680 V V Nesterenko 

(3.24) 

The remaining pl = m l - r l  equations in (3.21) give rise to pl constraints on the 
canonical variables 

ws,(q1, q 2 ,  PI, P 2 )  = 0 s , = l , 2  , . . . ,  P I .  (3.25) 

It is obvious how to change the considerations when some or all of equations (3.23) 
are satisfied identically. Further it is necessary to demand that 

P I  (3.26) 

and so on. As a result, all the secondary constraints can be obtained in this way and 
m functions A,( q l ,  q2 ,  p l ,  q2)  remain undetermined in terms of the canonical variables, 
where m is the number of primary first-class constraints. The theory does not enable 
us to fix them, and they remain absolutely arbitrary functions of their arguments. 
Therefore one can consider them as arbitrary functions of time. As a result, equations 
(3.20) prove to be transformed into the phase space completely. 

In order to get a correct final result one might originally have considered the 
functions A a ( q l ,  q 2 , p 1 ,  q2)  in (3.20) as unknown functions of time. This would have 
enabled us to go in the phase space immediately 

(3.27) 

The initial consideration of equations (3.20) in terms of the variables q l ,  q 2 ,  p l ,  
q2,  as given above, justifies this procedure. 

4. Derivation of the secondary constraints in the framework of the Lagrangian 
formalism 

In the preceding section the secondary constraints were obtained by successive 
differentiation with respect to time of the primary constraints using the equations of 
motion in form (3.20) or (3.27). For this purpose, however, one can use the Euler 
equations in form ( 3 . 1 6 ~ )  and, as in the case of a singular Lagrangian of the first 
order, this approach enables us to obtain some additional information about the 
secondary constraints [21] and trace the relation between the Lagrangian and Hamil- 
tonian descriptions [21-231. 

Differentiation with respect to time of the left-hand sides in equations of primary 
constraints (3.6) gives 

Now we replace the derivatives with respect to the coordinates q1 and q2 in (4.1) 
according to (3.19) and take into account (3.13). As a result, we obtain 

aL 
xi - - + p  1 j )  = o  

a2 L xi +- 
a x j a i j  axj 

d 
d t  - @ a ( q l , q 2 , P 2 ) =  

(4.2) 
a = 1, .  . . , m l .  



Singular Lagrangians with higher derivatives 1681 

The expression in parentheses vanishes due to (2.4). Thus the derivative 
(d /d t )qQ(ql ,  q2 ,  p 2 )  is equal to zero without using the equations of motion. In addition 
the questions 

are equivalent to the following relations: 

Let us now investigate the question: what are the conditions under which equations 
(4.4) transform due to the definitions (2.3)-(2.5) into equations containing only the 
canonical variables q l ,  q2 ,  p l ,  p z  and give, as a result, the secondary Hamiltonian 
constraints. For this purpose one has to act on the right-hand side of (4.5) by the 
operators (3.21). This gives [21] 

(4.5) 

Hence, if there are primary constraints which are in involution, at least in a weak 
sense, with the whole set of the primary constraints (3.6), then for the corresponding 
values of the index a in (4.4) the action of the operators (3.21) on the right-hand side 
of (4.4) gives zero. In this case the variables x on the right-hand side of (4.4) can be 
eliminated by virtue of (2.5) and equations (4.4) give us the secondary constraints on 
the canonical variables. The number of these constraints is equal to the number of 
primary constraints which are in involution, at least in a weak sense, with the whole 
set ofthe primary constraints (3.6). Obviously, these constraints are the same secondary 
constraints (3.25) obtained in the preceding section by the Dirac method. From (4.4) 
it follows immediately that these constraints are linear in pl and they are obtained by 
projection of the definition (2.4) on the zero eigenvectors of the matrix A. 

Further one must differentiate the constraints (3.25) with respect to time 

and use (3.13) and equations of motion in the form (3.160). If using (2.5) we can 
eliminate x from all the equations (4.6) or from some of them, then we obtain some 
more secondary constraints 

(4.7) U s 2 (  41 9 4 2  9 PI , P 2 )  = 0 s 2 = p 1 + 1 , .  . . , p2. 

This procedure of successive differentiation of the constraints must be continued until 
the appearance of the new constraints stops or the variables x cannot be eliminated 
from all the equations 

d 
d t  (4.8) 

using the definition (2.5). As a result, all the secondary constraints will be obtained 

- WSk*,(41 7 4 2 ,  PI 1 P 2 )  = 0 s k + l  = pk + 1, . . . 

ws(41, 4 2 , P I , P 2 ) = 0  s =  1 , .  . . , m2 m 2 = p l + p 2 + . .  .+pk. (4.9) 
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Let us establish the relation between Hamiltonian and Lagrangian constraints. First 
of all we show that the differentiation with respect to time of equations (4.5), which 
leads to the first set of the secondary constraints (3.25) gives, by virtue of the equations 
of motion (2.2), the Lagrangian constraints (3.3). Equations (4.5) can be represented 
in the form 

a = 1, .  . . , m,  axi d t  ax, 
(4.10) 

The differentiation with respect to time of the left-hand sides of these equalities gives 

In the first term in (4.1 1) we make the following substitution using equations of motion 
(2.2) 

d aL d2 aL J L  
(4.12) 

d t  axi dt2 ax, ax, * 

The second term in (4.11) vanishes due to the definition (2.4). As a result, from (4.11) 
we get the Lagrangian constraints (3.3). 

The procedure of differentiation of the Lagrangian constraints with respect to time 
is important for the Lagrangian formalism too. It is in fact the search of the invariant 
submanifold in the space with the coordinates x, 1, x, x. The Cauchy data for the 
Euler equations (2.2) must belong to this submanifold. Only for this constraint set of 
the initial data can one consistently formulate the Cauchy problem for equations (2.2). 

It is clear by the construction that for the primary constraints (3.6) and for the first 
set of the secondary ones (3.25) there are no corresponding Lagrangian constraints, 
as the substitution of (2.4) and (2.5) into (3.6) and (3.25) gives the identities. 

_-  - +--= -- 

5. The generalisation of the relativistic point action 

As an example, we consider the following generalisation of the point particle action 
[ 181: 

S = - m  I I  d s S a  k d s  (5.1) 

where m is a parameter with dimension of mass, a is a dimensionless constant, ds  is 
the differential of the particle world trajectory ds2 = dx, dx,, k is the curvature of this 
trajectory k 2 =  (d2x/ds2)2. With a given parametrisation x,(T), p = 0, 1 ,2 , .  . . , D - 1, 
action (4.1) is rewritten in the form 

The metric with the signature rlCV = diag (+, -, -, . . .) is used. 
The matrix A defined in (2.9) is given in the case under consideration by 

where 

(5.4) 
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It is then easy to be convinced that the matrix A has two eigenvectors with zero 
eigenvalues xp and P. Hence, the theory must involve two primary constraints. 

Using the definition? 

aL (Y 1, 
P z r  = --= -- - ax+ X2 & 

and equations (4.4) we obtain the primary constraints corresponding to (3.4): 

PI = P242 = 0 
po,=p:q:+(Y 2 = o  

(5.5) 

where q2,  = x,. 

method described in 0 4. The Poisson brackets will be defined as follows: 
We get the secondary constraints in the model under consideration at first by a 

The primary constraints (5.6) and (5.7) are in involution between themselves in a 
strong sense ( q l ,  (p2) = 0. Therefore there must be two secondary constraints which 
can be obtained by projection of the definition 

(5.9) 

on the zero eigenvectors of the matrix A : 6; = x, = q2, ,  6: = 1, - p 2 ,  . Projection of 
qz,, on (5.9) gives 

(5.10) 
- 

w ,  = p , q 2 -  mJq:  = 0. 

Finally, multiplying (5.9) by p 2 ,  we obtain 

w2 = PIP2 = 0. (5.11) 

Differentiation with respect to time of (5.10) does not give new Constraints. Differentiat- 
ing (5.11) with respect to time and taking into account the equations of motion 

p l = o  (5.12) 

and constraints (5.6)-(5.10) we obtain the expression 

One cannot eliminate x from (5.13) using (5.5). Indeed 

(5.13) 

(5.14) 

Thus the constraints (5.6), (5.7), (5.10) and (5.11) exhaust the whole set of constraints 
in the model under consideration. In contrast to the conclusion in [18,24] we have 
here four constraints. 

t The minus sign is introduced in order to get (2.5) for the spacelike components of p 2 .  
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It follows from definition ( 5 . 5 )  that 

(5.14') 

Therefore we get the following expression for the canonical Hamiltonian?: 
- 

H = - p , x - p , x - L = - p , q , + m J q : = - w , .  (5.15) 

Let us evaluate the Poisson brackets between all the constraints and construct the 
matrix A 

(5.16) 

On the submanifold M of the phase space defined by the constraint equations 

O A ( q l ,  q2,PI,P2)=0 A = l , . .  . , 4  (5.17) 

the following elements of the matrix A are different from zero: 

(5.18) 

Thus, we have on M rank A = 2. Hence there are two first-class constraints and two 
second-class constraints in this theory. Let us pick out these constraints explicitly. 
For this purpose we go to the equivalent set of constraints [ 151 

(5.19) 

where '$1, s = 1,2,  A = 1,  . . . , 4  are two zero eigenvectors of the matrix A. These vectors 
can be taken in the following form: 

As a result, we get the new set of constraints 

$1 = P242 = 0 

4 2  = (m* -P:)(P:q:+ f f 2 )  +2P:(Plq2)(Plq*- m a ' ,  = 0, (5.21) 
- 

43 =p192- mJq: = 0 44= PIP2 = 0 

which are equivalent to the initial constraints BA = 0, A = 1 ,  . . . , 4 .  This means that 
equations (5.21) define the same submanifold M in the phase space. But for constraints 
@ A ,  A = 1, . . . ,4,  there is only one Poisson bracket different from zero on M :  

( 4 3 , @ 4 )  = m2-p:. 

Thus, the constraints dl and $2 are the first-class constraints. 

t I f  we substitute in H ( q , ,  qz,  p , ,  p z )  the canonical momenta p ,  and p 2  by their expressions in terms of x, 
X, E according to (5 .5)  and (5.9) we get zero identically. It is the consequence of the invariance of the 
action (5 .2)  under the transformation i = f ( r )  with the arbitrary function 1: 
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It is interesting to note that in the phase space there is the invariant submanifold 
defined by the constraints ( 5 . 2 1 )  and by the equation 

45 = p :  - m2 = 0 ( 4 D ,  4 p ) = O  a , p = 1 , . . : , 5 .  

Let us now obtain the secondary constraints in this model by the Dirac method. 
Taking into account ( 5 . 1 5 )  we get 

2 = - 2 q , w 2  = 0. 

The requirement of the stationarity of the secondary constraints w1 and w 2  enables us 
to express h2 in terms of the canonical variables 

p : - m 2  
2P:( PI421 . 

h2= 

The Hamiltonian which defines the dynamics in the phase space is 
. 1 .  

p i  - m’ 
HT= H +  h l ( ~ ) p l  + P2 * 

2 P 3  Plqz) 

The mass of the system described by the action ( 5 . 2 )  should be defined as 

M 2  = p : .  ( 5 . 2 2 )  

Indeed, p y  is the conserved Noether vector of the energy-momentum in this theory. 
The variation of the action ( 5 . 2 )  can be written in the form 

If the equations of motion SS/  ax’’ = 0 are satisfied and a x p  = constant, then pip( T ~ )  = 

Let us show now that the constraints (5.61, (5 .7) ,  ( 5 . 1 0 )  and ( 5 . 1 1 )  do not lead to 
M 2  in ( 5 . 2 2 )  being positive. For this purpose it is convenient to use the accompanying 
Lorentz frame where q: = x p  = ( q ; ,  0, 0, . . .). To remove the superlight velocities, one 
should impose the condition q:> 0. This condition is quite accessible from the 
standpoint of the generalised Hamiltonian dynamics, since in the theory under consider- 
ation there are two first-class constraints 4l and 42 in ( 5 . 2 1 ) .  As a consequence, one 
should impose two gauge conditions on the canonical variables. The proper time gauge 

( 5 . 2 3 )  

is obviously suitable as one of them. 
In the accompanying reference frame introduced above we get from (5.6) p i  = 0. 

The constraint (5.7) reduce to p i =  a2/(q;)’  and from ( 5 . 1 0 )  we obtain ( P : ) ~ =  m2. 
Thus, in this reference frame we can write 

( 5 . 2 4 )  

PI p ( .2). 

q: = x 2  = constant > o 

M 2  = p :  = ( p y ) 2  - p :  = m 2  - p : .  
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The spacelike vector p1(7) is arbitrary except for the condition p ,  p2  = 0 following 
from (5.11). Choosing the corresponding initial data for p1(7) we can obtain an 
arbitrary sign for M 2  in (5.24). One could suppose that the positive sign of M 2  may 
be provided by the second gauge condition. Unfortunately (5.22) cannot be used in 
this way. This condition must involve p 2 ,  q2 or q1 without fail. 

The indefinite sign of M 2  at the classical level should reveal itself in direct 
consequence in quantum theory [25]. 

6. Conclusion 

The method proposed here enables one to construct the Hamiltonian formalism for 
systems described by singular Lagrangians of the second order. Obviously, the generali- 
sation of this procedure to singular Lagrangians containing the derivatives of higher 
order meets no significant difficulties. 

It would be interesting to make clear the connection of the invariance properties 
of the initial degenerate action with the number of the Hamiltonian constraints in the 
theory and with the properties of their Poisson brackets. 
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